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Abstract--We derive the necking condition in i.~;ofl-wrmal melt spinning employing the model of con- 
vected Maxwell fluids with strain-rate dependent material relaxation time. It is found that necking is possible 
when the extensional viscosity is strain-lhinning (strain-softening), and impossible when the ex[ensiona] vis- 
cosity is strain-thickening (strain-hardening). Ths finc[ing ~hen inmlediatel!/ reveals the correspondence be- 
tween the spinning process and entrance flow (contraction flow), as several recent articles show that vortex is 
formed in the entrance flow when the extensional viscosity is strain-thickening. Thus necking in spinning 
corresponds to r~o vortex in entrance flow, whereas no ne~ kh~g m spimfing to vortex in entrance flow, for the 
flow mechanism of the both situations is the extensk:nal flow whose behavior is determined by the exten- 
sional viscosily, 

INTRODUCTION 

Solid samples show necking phenomenon when 
the materials possess multi-valued stress-strain curves 
and the applied stress is greater than the material's 
critical necking stress as discussed by many people 
(e.g, Vincent[l] and Wada [2]). In the threadline of 
melt spinning, similar necking phenomec~a also have 
been observed and discussed by Ziabicki I3], Kase [4], 
Kikutaui [6] and Maeda [5]. 

However, to date there has not been an in-depth 
theoretical study about this necking in the spinning 
threadline, as to how and why such phenomena oc- 
cur, i.e., the necking conditions and rheological 
interpretation. In this study, we hence derive the neck- 
ing condition for isothermal melt spinning using the 
simple governing equations of the system, which in- 
cludes the model of convected Maxwell fluids with 
White's strain-rate dependent material relaxation time. 
Thus obtained results also reveal that depending on 
the value of the model parameter, "a" (strain-rate d~ 
pendency of the material relaxation time), "necking" 
can occur in the threadline, manifested as the discon- 
tinuity of the threadline velocity (equivalently, the dis- 
continuity of the threadline cross-sectional area). 

Along with the necking condition, we derive the 
extensional viscosity as a function of extensional 
strain-rate, which provides a basic ground for the 
rheological understanding of the phenomenon. The 
behavior of this extensional viscosity is compared with 
that in entrance flow, as related to the formation of 

w)rtex in entrance flow. Namely, the fact that strain- 
thickening fluids generally exhibit vortex and strain- 
thinning fluids do not, can be interpreted as an ev- 
idence that the vortex phenomenon and the necking 
phenomenon are probably governed by the, same 
kinematical mechanism. In other words, the fluids 
having larger "a" values and thus strain-thinning ex- 
tensional viscosity, exhibit necking in spinning and no 
vortex in entrance flow, whereas the fluids having 
smaller "a" values and strain-thickening extensional 
viscosity, no necking in spinning and vortex in en- 
trance flow. 

The dichotomy of fluids by these two different 
types, is further discussed in terms of different be- 
havior patterns in other flow situations. 

DERIVATION OF THE NECKING CONDITION 
IN ISOTHERMAL MELT SPINNING 

246 

We begin with the same governing equations of iso- 
thermal spinning as those appeared in earlier articles 
(e.g., Hyun [7], Hyun & Ballman [8], and Hyun [9]). 
The same assumptions are also adopted here. 1) The 
secondary forces such as inertia, surface tension, air 
drag, and gravity are neglected. 2) The origin of the 
coordinate system starts at the die swell region. 3) 
The velocity distribution across the threadline cross- 
section is uniform. 4) We consider stress, velocity and 
so on in the axial direction only. 

Then the one-dimensional model of isothermal 
melt spinning is as follows. 
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Continuity equation: 

(,OA / § 
~ 0  (1) 

, a t , ' ~  ,, a x  / ,  

Equation of motion: 

O IAo), = 0  (2) .~x ' 

Constitutive equation (convected Maxwell fluids): 

~ +  3` Cvi. O a  ~ , _ ,Sv  ..By, 
' OX ./~ 

Strain-rate dependent mateiral relaxation time (lde 
& White [10]): 

; .= Xo/(1 ~-a,/-33` o (av/Ox),~ (4) 

where "a" is the material parameter representing the 
degree of the strain-rate dependency of the material 
relaxation time, X. 

The steady-state solution of the above equations (as 
shown in Hyun [9]) is, from Eqns. (1) and (2), 

Av = Q = constant = steady-state throughput 
An= F = constant = steady-state threadline tension 

force and from Eqns. (3) and (4), 

( ~ ) v §  3`~ ( ~ )  O v  {v 
l+a4E3`o ~x ) , 

~ X e  e 

= { 5 /  

and (Ov/Ox)t= dvldx at steady state. 
Simplifying the above equation, we get 

v ~  (dv/dx) [ag3-3.oV - 3`oV- 2G Xo (Q/F)]=0{6) 

and 

(dv/dx) =v/13`o (K+v  ( 1 - a v e )  ] }, (7) 

where 
K = (2GQ)IF = a reciprocal tension force. I8) 

Integrating Eqn. (7) from the spinneret (x=0, 
v = Vo) to the position of x, v, we obtain 

X = h o K l n ( v / v o ) + a o ( t - a ] - 3 )  (V-Vo) (9) 

And the expression for K can be obtained from Eqn. 
(9) by using the boundary condition at the take-up, 

i.e., at 

x =L ,  v =vL=rVo (10) 

where 

r = d r a w - d o w n  rat io= v~. /vo=Ao/A, . .  (11) 

L - )-o (1 - ag3)vo ( r -  1) 
K -  

3.olnr 

_ v o [ 1 - ~ . o ( 1 - a ~ ) ( r - l !  
~olnr  

= v o ~1 §  Ir - 1 ) .~ (12) 
~oLnr 

where 

;.o-= (3. ov ,,)/L, , 8 -  X o (a ~"3 - 1 ). (13) 

We notice here that the reciprocal force K has the 
same dimension as velocity, v o. 

Upon substitution of Eqn. (12) into Eqn. (9), we get 

x =  noV o ~l+fl  (r - 1))In (v./v o)/(~ olnr) 4 3`~ (71 - 

ag-3)vo (v /vo -  1) 
or  

x / L =  I [ l §  ( r -  1) ! / l n r / I n  ~ -  fl (se- 1) (14) 

where 

~ v /v  o Ii5) 

Eqn. (14) is the implicit expression of the Ihread- 
line velocity, v (or ~),in terms of the distance from the 

spinneret, x, i.e., Eulerian expression of v. The La- 
grangian expression of v, i.e., in terms of the fluid ele- 
ment traveling time from the spinneret, r ,  can be read- 
ily calculated as follows. From Eqn. (7), we get 

dx/v = I ~ o ~K+v (i - a~/3) 1/v '  idv (16) 

and so 

r ~  f * d x = / ' ~  XoCK+v (1 - a~'3/1 
oo v Ov o V 2 d v  

= (AoK/Vo)(1 - Vo/V ) § 3`~ (1 - a~/3) in (V/Vo) (17) 

The substitution of Eqn. (12) into Eqn. (17) yields 

r = (3`0/'r176 (1 -Vo /V)Vo( l+ ,8 ( r -  1)l /(~.r  

+ 3`0 (1 - a ~ ) i n  (v/v o) 

The dimensionless Lagrangian time becomes as fol- 

lows using Eqn. (13). 

~ - = r V o / L = l [ 1 - f l ( r - 1 ) ) A n r l  ( 1 - 1 / s  e) 

- b'tn e (18) 

Eqn. (18) shows the implicit expression of the 

threadline velocity, v (or se), in terms of the fluid trav- 
eling time from the spinneret, i.e., Lagrangian expres- 
sion [See Hyun & Ballman [8] for the case of constant 
relaxation time, i.e., a = 0 for Eqn. (4)]. 

Now we proceed to find the necking condition in 
the threadline from Eqn. (14) [Eqn. {18) could be used, 
but [t is easy here to use the Eu[erian expression to 
find the necking (discontinuity in velocity and cross- 
sectional area)]. As shown in Eqn. (14),/~ and r are the 
parameters which are involved in finding the necking 
phenomenon. Specifically, as shown by the case (3) 

K o r e a n  J.  Ch.  E. (Vol .  6 ,  No.  3) 
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Fig. 2. Necking condition curve and the three cases.  

Fig. I. Eulerlan plots of dimensionless  threadllne 
velocity for the three cases  shown in (23). 

curve in Fig. 1, if the value of ~= v/vo at the position of 
the maximum x/L is less than r (or equivalently, the 
curve of ~= v/vo has an excursion beyond the point of 
x/L= 1 ), then there are always multiple (douMe) values 
of ~ = v /v  o at x/L = 1 because of the fixed boundary. 
condition at the take-up as shown by Eqn. (10). 

Hence at the point of maximum value of x/L, we 
have 

d ( x / L ' , / d , $ = 0 -  { ~ l + ' 8 ( r -  l l ] / l n r ;  it/{:) - ,8  
or 

r ~1+,8 ',r - 1] ]/( '81n r) (19) 

Therefore, the necking condition is 

{rl 4- '8(r -  1 ) ~ / ~ l n r ) ~ < r  (20) 

We can further rewrite the above condition in a 
simpler form by defining the critical value of/3, tic, at 
the off,set point of the multiple values of se(discontinui - 
ty of ~) at the take-up. 

{ [iL§162 ( r -  1) ] /  (,fl~lnr) }=r ,  
or 

,8~= 1/(r (lnr - 1) -/- 1] (2!) 

Then the necking condffion of Eqn. (20) becomes 

;9>,8r --1/ r ' l n r - l~  ~ I] i22! 

As seen in Fig. 2, ,8 c is always positive. And so if ~9<0 
[i.e., a<l/.,'~ from Eqn. (13)], the necking condition of 
Eqn. (22) is never met and thus there is no necking at 
all. Accordingly, necking is possible only whe~ j3>0 
(i.e., a>l,'.r and Eqn. (22) is satisfied. This means that 
if the value of ,8 is above the curve of ~ (r) as shown 
in Fig. 2, there occurs necking, whereas if the po:mt of 
fi lies below the curve, no necking results. 

In order to demonstrate the situation, we consider 
three representative cases throughout this study. The 
same value of r and thus the same tic (r) value are used 
for the three cases while different values for the ma- 
terial parameter "a" and for the dimensionless relaxa- 
tion time, ~ , o = X o v o l L  are used. 

case i 1 } : r - 20. i5% =0. 0244, 

a - -0 .3  <i.e, a <  1 / ~ - =  0. 577,,, ~,o=0.01, 

'8-- - O. 0048 

casei2) : r 20,'8c=0. 0244, 

a =  1.0 {i e ,  a >  1/g~3), 2.o=0. 01, 

fl= 0. 00732 

case ',3): r - 2 0 ,  ,8r 0244, 

a =  1.0 !ie., a >  1/,/3), ~,o- 0. 1, 

fl-- 0. I)732 (23) 

As explained above, case (1) doesn't exhibit neck- 
ing because /3 is negative (equivalently a<1/,/3) and so 
the necking condition, Eqn. (22) is not satisfied. Case 

July, 198g 
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(2) also exhibits no necking, because alttiough ~ is 
positive (a>lA/3), it still is smaller than ~ and so Eqn. 
(22) is not satisfied. Case (3) does exhibit necking 
because Eqn. (22) is satisfied. Figs. 1 and 2 show these, 
three cases. 

Before moving to the next section of extensional 
viscosity, we compare the necking condition of mell 
spinning derived in this section with the conventional 
necking of solids already mentioned in the Introduc-. 
tion of this article. 

There are two conditions for the necking of solids, 
1) the material should possess a nmlti-valued stress.- 
strain curve (i.e., multiple different strain values exis~ 
for a single stress) for a certain region of the stress, and 
2) the applied stress is greater than the material 
critical necking stress which depends on both the 
material characteristics and processing conditions. 
In parallel with these, for the necking in spinning as 
derived so far, we can say that a>l l ]3  or,8>0 cor- 
responds to the first condition above and F.qn. (22) to 
the second condition. While the first correspondence 
is easily understood, the second correspondence re- 
quires the following illustration. 

Combining Eqns. (5), (8), (12), and (13), we get 

G~ F /A 

- 2 G v / K - ! ( 2 G ~ . o l n r ) / ~ l ~ , 6 ' ~ r - 1 )  / (v/vo) 

:= . t 2 G f l l n r ) / t t a ] 3 -  1, ~ l+ f l , , r -  1) [~ ] (V/Vo) 

{';4) 

Then the applied stress at the take-up becomes 

a= i  2O,St lnr ) r~ / l ia~/3-  1) r , l+jg(r-  1,'~/ 

=(positive constant) / 1/~. (I/B) ~ (r - 1) 1 / (25) 

for given '<a", r, and G. The critical necking stress 
becomes 

~ =  20 t lnr)rCT~l/ t(av~- 1) i1+r162 r -  1,,] / 

= (positive constant) t 1 / i  (1/,4'~) + (r - 1) 1 ',' (2:6) 

Therefore, the necking condition Eqn. (2',!) leads to 

a> ar 1271 

i.e.. the applied stress>the necking stress, thus prov- 
ing the second correspondence betweec necking of 
solids and necking in spinning. 

Finally, we also can find the necking ratio at the 

take-up as follows. 

necking ratio= r/iV/Vo', ~ , . ,  (28) 

For example, the case (3) which exhibits necking at 
the take-up, shows that 

necking ratio ~20/5.15 = 3.883 

Fig. 3. Eulerian plots of dimensionless extensional 

strain-rate for the three cases. 

DERIVATION OF THE EXTENSION,~L 
VISCOSITY IN ISOTHERMAL SPINNING 

First we need the expression of strain-rate, ~, in 
spinning because the extensional viscosity is defined 
as the ratio of stress to strain-rate. Combining Eqns. (7) 
and (12), we get 

i-=dv/'dx 

=v/IAo[{,,% 1 4 f l~r-  11 ,/,i~,olnr;} §  ( 1 - a ] 3 , ] i  

= 1 / t L  ( l + , 8 ~ r -  1;: ]/I ivlnrl i  - Xo(aq•- 1)~ ], (29) 

The dimensionless strain-rate, ~, is then 

= l / ! t [ l + f l ( r - l ~ / / l n r l  I v o / v l - ~ t o ( a r  ~ 

= l / i f l l  v /7 , r -1 )~ / 'h~ r  <, ( 1 / ~ i - / 7 i  (30) 

where ),o, fl, anti s a are given by Eflns. (13) anti (15). 
Next, the stress expression is already given by Eqn. 

(24), and thus the dimensionless stress becomes 

~-- a~ (2Oh =: 3. o t i n t ) ~ / i l  ~-,8 ,r - 1)] 

=r dnrl ~t' 4 ,',a]3-- i) [14-r ',r - 1)]} (31) 

Finally the dimensionless extensional viscosity is 
then obtained from Eqns. (30) and (31). 

~-=d /~= /Xo( ln r J  ~/(1 "f f l { r -  1)~1 

[ I[1 § 1 6 2  (1/sa) - r (32) 

Korean J. Ch. E. 01ol. 6, No. 3) 
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Fig. 4. Eulerian plots  of d imens ion l e s s  threadl ine  
s tress  for the three  cases .  

The above expression is further rewritten as follows. 
From Eqn. (30) we get 

~ :  [1 - f l  !r - 1 ) i / ! l n r  [ (1/~)-+ fl~ ~ C33) 

Substitution of Eqn. (33) into Eqn. (32) yields 

1 i I, f4) ~=~,otl-D>/~,;1/~;, ~ , = 7 { < ~ 1 - -  i , 
k~-' 1 

Now we obtain for given values of ~, the values of 
the dimensionless strain-rate, 7, dimensionless stress, 
o:, and dimensionless extensional viscosity, ~)~, for the 
same three cases shown in Eqn. (23) using Eqns. (31)), 
(31), and (32)[or (34)], respectively, Then ,we plot them 
against the distance from the spinneret using Eqn. 
(14), i.e., Eulerian plots, and the results are shown in 
Figs. 3,4, and 5. As we might expect from the velocity 
profiles in Fig. 1, the strain-rate and stress increase 
with the distance in isothermal spinning as Figs. 3 arid 
4 show. 

However, the extensional viscosity displays dif- 
ferent behavior as shown in Fig. 5, i.e., it increases for 
case (1) where a <1/v'~ (or fl< 0) whereas it decreases 
for cases (2) and (3) where a > 1/d3 (or/9 > 0). In order 
to better understand this dichotomy of the cases de> 
pending upon the value of "a", this time we plot the 
same extensional viscosity against the strain-rate and 
the results are shown in Fig. 6. 

"l"he extensional viscosity exhibits strain-thickening 
(hardening) behavior for the spinning of a <1 d3 fluids, 

Fig. 5. Eulerian plots  of d i m e n s i o n l e s s  extens ional  
v iscos i ty  for the three  cases .  

Fig. 6. D imen s ion l e s s  extens ional  v iscosi ty  vs.  di- 
m e n s i o n l e s s  extens ional  strain-rate or the 

three  cases .  

and strain-thinning (softening) behavior for the spinn- 
ing of a>l/v'3 fluids. This is a very important finding, 
the significance of which will be further discussed in 
the next section in connection with other flow situa- 
tions. 

We can easily ascertain the above strain-rate depen- 
dency of the extensional viscosity from Eqn. (34) as 
follows. The slope of the curves in Fig. 6 is obtained 
below. 

July~ 1989 
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r , - k r  i 1," E)']/L(].,",~;H I~' 

= -  ~ ~o,i,'s i/fl~. , -lj'l I/# 

- - -  ~posit~ve constant;  ~l/'d; :3St 

Thus the slope becomes positive (strain-hardening), 

if/9<0 {as in case (1} curve], and negative (strain- 
softening), if~>0 [as in eases (2) and (3) curves]. 

D I S C U S S I O N  

In the previous sections, we have derived the neck- 
ing condition for isothermal spinning, which directly 
corresponds to the necking condition of solids. We 
also have found that the extensional viscosity be ~ 
comes strain-thickening (hardening) or strain-thinning 
(softening) depending upon the value of "a" (the 
material parameter representing the degree o[ the 
strain-rate dependency of the material relaxation time). 
Here we further point out that the dichotomy of fluids 
determined by "a" governs other extensional flow 
situations as well. 

First, we show that Xo,~= dimensionless strain-rate 
(different from the other dimensionless strain-rate, 
~)=a Deborah number has a maximum value for 
a<ll?3 fluids and no maximum for a>lA/3 fluids. From 
Eqns. (7) and (29), we find that 

Since the numerator is always positive in spinning, the 
denominator should be positive to make v positive. 
Hence, the fluids having a>l/,/T set no condition on 
~o~, whereas the fluids having a<l/~/3 yield the max- 
imum value of Ao~ as follows. 

X,~)~.~= 1/~ 1 - a~"3, :47! 

Thus we have found that in the constant force exten-- 
sion (i.e, spinning processes), there exists the max-- 
imum extension rate for strain-hardening fluids while 
no maximunl extension rate exists for strain-softening 
fluids. Denn and Marrucci {11] derived the similar 
results for constant strain-rate extension, lde ancl 
White [10] interpreted these as cohesive failure mode 
and cluctile failure mode (necking), respectively. 

Following the similar approach, we can find the 
maximum extension (i.e., the maximum draw-dowr~ 
ratio, r} for strain-hardening fluids and no such max- 
imum value of r for strain-softening fluids as shown 
below. From Eqn. (12), we have 

K=v~ 1 r ~  r - 1 ,  i ~ l n r  -v,) 1 i A,, .av'~-l} 

, r -  1; j/ :~.olnr ; 

While the strain-softening (a>ltv'3) fluids always make. 

K positive and so no condition on r, the strain- 
hardening (a<l/v~i) fluids make K positive only when r 
is smaller than rm, ~ given by 

r ~,.~.= 1§ 1/{ Ao (1 - a,,,'.Ti ] i38] 

The case of a=  0 (constant relaxation time) was 
reported by Hyun & Ba[lman [8] for the result of Eqn. 
(3?) and Hyun [7] for the result of Eqn. (38). 

Secondly, the finding in this study that the exten- 
sional viscosity can become either strain-hardening or 
strain-softening has already been observed experimen- 
tally by Chen et al. [12], Kanai & White [13], Tsou & 
Bogue [14] and others using LDPE, HDPE, etc. in spin- 
ning and tubular film blowing experiments. Our 
theoretically derived results of the phenomenon and 
the necking conditions here corroborate their data fair- 
ly well. The theoretical results by Ide & White [I0] and 
Minoshima & White [15] about the different failure 
modes of the various polymer melts [i.e., necking 
(ductile failure mode) and no necking (cohesive failure 
mode)] also render good agreement with our results. 

Thirdly, the respective correspondence between the 
necking (or no necking} in spinning and no vortex (or 
vortex) in entrance flow deserves some discussion. 
Recently, Baird et al. [16] and Binding [17] and others 
have found that the vortex formation in entrance flow 
(contraction flow) is related to the strain-hardening 
behavior of the extensional viscosity. 

As shown in Fig. 8, it is intuively clear that if the 
fluid can perform necking in extensional flow, there is 

Fig. 7. Neck ing  c u r v e  and d r a w  r e s o n a n c e  curve  in 
s p i n n i n g  of a s tra in-sof ten ing  fluid: ca se  (3). 

Korean J. Ch. E. (Vol. 6, No. 3) 
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(a) (b) 

Fig. 8. Schemat i c  d i a g r a m  of  e n t r a n c e  f low,  {a) vor-  

tex f o r m e d  {b) n o  vortex .  

no vortex in en t rance  flow [Fig. 8(b)J, while  if the fluid 
exhibi ts  no necking  in extensional  flow, then  vortex is 

inevi table  [Fig. 8(a)], because smoo th  extensional  flow 
profiles (so-called wine  glass-shaped profiles) are form- 
ed as a stress relieving mechan i sm.  Hence, we can say 
that necking in sp inn ing  and  vortex in en t rance  flow 
are governed by basically the  same  extensional  flow 

Table 1. C o m p a r i s o n  of  the  t w o  f lu ids  

m e c h a n i s m  which  is de te rmined  by the ex tens ion  rate 
dependency  of the extensional  viscosity, which,  in 

turn, is decided by the d ichotomy of the fluids accord- 
ing to the material  parameter  "a" in this study. 

Fourthly,  as reported by Hyun [9], the draw 
resonance  p h e n o m e n o n  in sp inn ing  also displays 
fundamenta l ly  different behav io r  depend ing  upon  the 
va lue  of "a". Since strain-softening (a>l/v'7~) fhJids can 
exhibit  necking if the necking condi t ion of Eqn. (22) 
is satisfied, we plot the necking curve and draw res- 
onance  curve in the same figure for the  case (3) in Fig. 
7. There  are four different regions as to whe the r  neck- 
ing and  draw resonance  can occur. While  some  experi- 
mental  data  exist for some regions, there  are not yet 
comple te  exper imenta l  results to explain flJlly the 
whole  region of Fig. 7. 

C O N C L U S I O N  

The crux of the  results of this s tudy is that the di- 
cho tomy of fluids reveals 1) necking in spinning,  2) 
vortex in en t rance  flow, 3) draw resonance  in spinn-  
ing, and 4) failure modes  of ex tens ion  of solids, are all 

Categories Fiords l Fluids l[ 

Strain-rate dependence of the 

material relaxation time, "a '  

Necking in spinning 

Draw resonance in spinning 

Strain-rate dependence of the 

extensional viscosity 

Vorlex in entrance flo',,v 

Failure mode of solid extension 

Effect of ~., ,GVo on L necking 

Effect of ~o~. aovo on draw 
L 

resonance 

Effect of r= draw-down ratio on 

necking 

Effect of r on draw resonance 

Multiplicity in capillary flow rate 

Typical materials 

Maximum dimensionless 

extension rate, (2,o g),~ax 

Maximum draw-down ratio, rma x 

small, a <1/./-3 

necking impossible 

r e is larger than 20.21 (Newtonian 

re) and increases with ~.o 

strain-thickening (hardening) 

vortex formed 

cohesive failure mode 

no effect 01o necking) 

stabilizing (or reduce draw resonance) 

no effect (no necking) 

increase draw resonance 

no multiplicity 

LDPE 

1/(1-as 

1 + 1 / [ ~ ( l  - a(3)]  

large, a> 1/,r3 

necking possible if necking condition 

of Eqn. (22) satisfied 

r< is smaller than 20.21 (Newtonian 
re) and decreases with x,-.~ 

strain-thinning [softening) 

no vortex 

ductile failure mode (necking) 

more necking 

destabilizing (or increase draw 

resonance) 

more necking 

increase draw resonance 

nlultiplicity 

HDPE 

Doesn't exist 

Doesn't exist 
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related to each other and are governed by the behavior 
of the same extensional viscosity in extensional flow. 
Therefore, the conclusion can be best summarized by 
Table 1 below where the comparison of two different 
fluids in different flow situations, is made. What we 
have shown in this article is thus that using a simple 
model which is amenable to analytical calculation, Ihe 
fundamental physics involved in extensional flow, is 
revealed and interpreted. There are, of course, many 
tasks left in studying extensional flow, e.g., instead of a 
single material relaxation time, multil:le relaxation 
times, and more accurate constitutive equation, etc., 
which obviously require extensive computer simula- 
tion efforts. 

NOMENCLATURE 

A 
a 

F 
G 
K 
L 

O 
r 

r c 

t 
V 

V O 

V L 

X 

t~ 

r io 

), o 

threadline cross-sectional area 
material parameter representing the strain-rate 
dependence of the material relaxation time 
thread]ine tension force 
material modulus 
threadline reciprocal force, K - 2  G Q/F 
distance from spinneret to take-up 
threadline throughput (flow rate), Q = Av 
draw-down ratio, r= vLfvo= Ao/A L 
critical r at the onset of draw resonance 
time 
threadline velocity 
threadline velocity at spinneret (x=- 0) 
threadline velocity at take-up (x = L) 
distance from spinneret 
dimensionless term, fl ),o (ad-3- 1 ) 
value of 77 at critical necking situation 
extensional strain-rate 
dimensionless extensional strain-rate, ~=-- s 
extensional viscosity, /~e ~ 0"/~ 

dimensionless extensional viscosity, 0-~- ,~/~- 
material relaxation time 
constant materials relaxation time 
dimensionless material relaxation time, A o--: X o 
vol L 

O 

CYc 

2" 

dimensionless threadline velocity, ~ -- v/v o 
threadline stress 
critical necking stress 
dimensionless threadline stress, b-= ,7 / !2G 
fluid traveling time from spinneret 
dimensionless fluid traveling time from spin- 
neret, ~ r vo/L 
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